
Abstract-Intravenously distributed ultrasound contrast increases
echoes from the normally low echogenic bloodpool and
myocardial perfusion imaging is developing. However the
microspheres used are potential endothelial stimulators as well
as nonlinear scatterers. Tissue Doppler is developed to detect
velocities of myocardial motion, which are in the same range as
perfusion flow velocities. The effect of contrast is not evaluated.
We performed echocardiography in 12 patients with ischemic
heart disease before and immediately after a slow intravenous
infusion of 2.7 ml Optison  using color myocardial Doppler
imaging (GE Vingmed systemV). Longitudinal basal systolic
velocities and their integrals were analyzed in digitally stored
cineloops. Peak mean velocity increased 10% by contrast from
mean 5.2±1.8 (SD) to 5.7±2.3 cm/s (p=0.02, confidence interval 2-
16%) but integral did not change (0.8±0.4 cm). Contrast has no
effect on blood pressure or heart rate in used dose. It is therefore
of interest to further evaluate if this increase in velocity; a) is a
methodological effect that may be used to detect contrast within
myocardium (and thereby perfusion / blood volume), or b) is
secondary to increased flow and motion caused by endothelial
and vascular effects from the contrast microspheres. Either have
important methodological, physiological and clinical impact.
Keywords Ultrasound Tissue Doppler, Myocardial Contrast,
Perfusion, Physiology, Methodology

I. INTRODUCTION

Myocardial contrast echocardiography is a rapidly
increasing area after the introduction of new imaging
modalities and contrast agents [1, 2] . Microspheres stable
enough to pass the pulmonary circulation enables left heart
enhancement after intravenous administration. Gas
encapsulated in shells with different acoustic behavior makes
the returned signal specifically reshaped. The detection of
single bubbles within the micro-circulation is therefore
possible and has numerous applications within the ischemic
heart disease area as well as for pharmaceutical and pato-
physiological evaluation of myocardial perfusion effects. Left
side ultrasound contrast agents are today registered for blood
pool enhancement [3] .

Visualization of myocardial flow and blood volume have
until lately been dependent on relatively high power output
used in order to destroy the microbubbles [4] . There are no
reported hemodynamic effects from registered contrast agents
when used as in clinical practice. Experimental designs
however, show that the combination of high output
echocardiography and contrast agents have effects on levels
and uptake of vascular endothelial growth factors (VEGF)[5]
. VEGF is know to stimulate angiogenesis and dilatation, the
latter probably due to both shear-stress-related and direct
effects [6, review] .

When exposed to ultrasound, the microbubbles oscillate,
and also generate harmonics at medium transmitted power. At
high power output they rupture [7] and the returning pulse

changes radically.  How contrast agents with the above
mentioned acoustical responses, affects measurements with
color tissue Doppler imaging [8] , developed for myocardial
motion analysis, is to our knowledge not evaluated.
Myocardial motion is slower than intracardiac blood flow and
the relatively low velocities are comparable to those seen in
the microcirculatory flow.  An appealing possibility would be
if contrast (i.e. blood) motion could be distinguished from
tissue motion using Tissue Doppler, either in pulsed mode, or
in color mode. The aim of this study was to evaluate the
effect of contrast on color tissue Doppler images and their
velocity estimates in a clinical setting.

II. METHODOLOGY

1) Patients. Twelve patients with known ischemic heart
disease and from scintigrams diagnosed perfusion defects
participated. They were between 50 and 80 years old
(mean±SD 63±10) and 5 were female.

2) Echocardiography. In left supine position apical two
and four chamber views were obtained. Two heartbeat
cineloops with superimposed color tissue Doppler
information (2.5MHz, GE Vingmed systemV, Horten,
Norway) were digitally stored. Mechanical index was high
1.2 as was framerate (approx. 100 fps) and images were
continuously captured with a Nyquist level of 0.25cm/s. Gain
was corrected in order not to cause too much blooming
effects, otherwise settings were kept unchanged. Registrations
were made before and immediately after slow intravenous
infusion of 2.7 ml Optison (Mallinckrodt, Linköping,
Sweden), a solution of 2—4.5 um microspheres made of
albumin (shells) and perfluorocarbon gas. No adverse effects
were registered.

Fig. 1. Illustration of septal analysis (4 chamber view).
SV: Spatial mean peak systolic velocity (cm/s), SVTI: systolic integral.
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3) Analysis. Spatial mean peak systolic longitudinal
velocity (SV) and its systolic positive integral (SVTI, systolic
shortening) were measured in the basal segment of the septal,
lateral, posterior and anterior walls, using a comercially
available analysis package (Fig.1. EchoPac, GE-Vingmed
Sound, Horten, Norway). Values from two heart beats were
averaged and results from pre- and post-contrast were
compared using the paired two-tailed Student’s t-test. A p-
value <0.05 was considered significant. The reproducibility
of the measurements has been evaluated previously in a
multicenter study and coefficients of variation for SV and
SVTI are 9-14% and 9-17% respectively [9] .

III. RESULTS

The recorded SV and SVTI in patients were overall low
(5.2 ± 1.8 cm/s and 0.8 ± 0.4 cm) when compared to normal
values [10] , due to left ventricular dysfunction in ischemic
heart disease. After contrast the SV increased approximately
10% to 5.7±2.3 cm/s (p=0.02, 95% confidence interval 2-
16%), but integral did not change (p= 0.54). The correlation
between the measurements before and after contrast was 0.83
both for SV (Fig. 2) and SVTI.

Fig. 2. Linear regression of spatial mean peak myocardial velocities (SV)
before and after IV contrast. Line of identity is dotted.

The 95% predictive interval [11]  included the zero but a
bias of 0.5 cm/s was introduced in systolic velocity but not
for integral as a mean value of differences (Figure 3). No bias
was introduced when measuring SVTI before and after
contrast (mean difference <0.02).

IV. DISCUSSION

Our results show that different velocity based measurements
during heart cycle react differently on contrast. We show a
10% increase in spatial mean peak velocity while no
consistent change was noted in the systolic integral. However
there was a relatively wide range of changes, possibly due to
unevenly distributed old myocardial infarctions and

Fig. 2. Mean difference (bias) and 95% predictive intervals (+2SD)
when SV before and after contrast are compared (marked by arrows and

plotted against mean SV on x-axis).

reproducibility factors. No patient had symptoms or heart rate
change during the infusion. However, there are both
methodological and physiological aspects that have to be
considered.

The unevenly distributed effects indicate that a
physiological effect cannot be ruled out. Intracoronary
injections of microspheres after PTCA dilate the coronary
arteries. One possible explanation is shear stress induced
vasodilatation caused by increased levels of NO /
prostaglandin resulting in decreased afterload and/or
increased coronary flow or motion. Also, VEGF is upgraded
by ischemia. Increased uptake of VEGF could be another
explanation of vasodilatation. VEGF is known to induce
those vasoactive substances, independently of shear stress
[12] . This could be possible as the combination of high
output echocardiography and contrast agents have effects on
VEGF in animals as already mentioned [5] .

Pure methodological effects do not fully explain the
differences between SV and VTI. The power output used was
high and there is a clear risk that most contrast bubbles
already ruptured within the myocardium, in which case there
were few bubbles to detect. Bubbles that do rupture, cause
random phase shifts [13], which should not consistently
increase the velocity estimate. However, bubbles in regions
where the acoustic pressure is lower, contribute with
harmonic energy, which could alter the estimated velocity
[13].

A pure echo-enhancing effect would equal a gain
increment, but here the gain was adjusted in the normal way
for optimal imaging. The difference is that the microbubbles
move slowly relative the myocardial tissue. Bu this motion is
presumably isotropic, meaning that the detected velocity
should not change.

If further investigation do explain the increased velocity
to be a methodological effect, this may be a new way to
detect contrast agents that need to be further evaluated.
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V. CONCLUSION

 Ultrasound contrast agents influence upon velocity
estimates of myocardial motion as measured by color tissue
Doppler imaging. The reason for the changes might have both
physiological and methodological background. Further
evaluation will show if the changes are effects secondary to
changes in endothelium and vessels or if it is an effect of
contrast itself on the ultrasound tissue Doppler signal. Either
have important methodological, physiological and clinical
impact
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